A Characterization ofQ(5, q) Using One SubquadrangleQ(4, q )
نویسندگان
چکیده
Let 0 be a finite generalized quadrangle of order (q, q2), and suppose that it has a subquadrangle 1 isomorphic to Q(4, q). We show that 0 is isomorphic to the classical generalized quadrangle Q(5, q) if at least one of the following holds: (1) all linear collineations of 1 extend to 0; (2) all subtended ovoids are classical (and we present a uniform proof independent of the characteristic). Further, for q odd, we prove that if every triad {x, y, z} of 1 is 3-regular in 0 and {x, y, z} ⊂ 1, then 0 is classical. We also show that, if for every centric triad {x, y, z} of an ovoid O of the quadrangle
منابع مشابه
Characterization of $mathrm{PSL}(5,q)$ by its Order and One Conjugacy Class Size
Let $p=(q^4+q^3+q^2+q+1)/(5,q-1)$ be a prime number, where $q$ is a prime power. In this paper, we will show $Gcong mathrm{PSL}(5,q)$ if and only if $|G|=|mathrm{PSL}(5,q)|$, and $G$ has a conjugacy class size $frac{| mathrm{PSL}(5,q)|}{p}$. Further, the validity of a conjecture of J. G. Thompson is generalized to the groups under consideration by a new way.
متن کاملOn codewords in the dual code of classical generalized quadrangles and classical polar spaces
In [8], the codewords of small weight in the dual code of the code of points and lines of Q(4, q) are characterized. Using geometrical arguments, we characterize the codewords of small weight in the dual code of the code of points and generators of Q(5, q) and H(5, q). For the dual codes of the codes of Q(5, q), q even, and Q(4, q), q even, we investigate the codewords with the largest weights....
متن کاملA NEW CHARACTERIZATION OF SIMPLE GROUP G 2 (q) WHERE q ⩽ 11
Let G be a finite group , in this paper using the order and largest element order of G we show that every finite group with the same order and largest element order as G 2 (q), where q 11 is necessarily isomorphic to the group G 2 (q)
متن کاملOn codewords in the dual code of classical generalised quadrangles and classical polar spaces
In [9], the codewords of small weight in the dual code of the code of points and lines of Q(4, q) are characterised. Inspired by this result, using geometrical arguments, we characterise the codewords of small weight in the dual code of the code of points and generators ofQ(5, q) andH(5, q), and we present lower bounds on the weight of the codewords in the dual of the code of points and k-space...
متن کاملCharacterization of $G_2(q)$, where $2 < q equiv 1(mod 3)$ by order components
In this paper we will prove that the simple group $G_2(q)$, where $2 < q equiv 1(mod3)$ is recognizable by the set of its order components, also other word we prove that if $G$ is a finite group with $OC(G)=OC(G_2(q))$, then $G$ is isomorphic to $G_2(q)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2002